
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BLOCKCHAIN TECHNOLOGY LAB [R20A0591]

LABORATORY MANUAL

B. TECH CSE (IV YEAR–I SEM)

R20 REGULATION (2024-25)

Name :

Roll no:

Section:

Year :

MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution– UGC, Govt. of India)
Recognized under2(f)and12(B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA &NAAC–‘A’
Grade-ISO9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad –500100, Telangana, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the students

technologically superior and ethically strong which involves the improvement in the

quality of life in human race.

Mission

❖ To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the students in to competent and

confident engineers.

❖ Evolving the center of excellence through creative and innovative teaching learning

practices for promoting academic achievement to produce internationally accepted

competitive and world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: PROFESSIONALISM & CITIZENSHIP

To create and sustain a community of learning in which students acquire knowledge

and learn to apply it professionally with due consideration for ethical, ecological and

economic issues.

PEO2: TECHNICAL ACCOMPLISHMENTS

To provide knowledge-based services to satisfy the needs of society and the industry by

providing hands on experience in various technologies in core field.

PEO3: INVENTION, INNOVATION AND CREATIVITY

To make the students to design, experiment, analyze, interpret in the core field with

the help of other multi-disciplinary concepts wherever applicable.

PEO4: PROFESSIONAL DEVELOPMENT

To educate the students to disseminate research findings with good soft skills and

become a successful entrepreneur.

PEO5: HUMAN RESOURCE DEVELOPMENT

To graduate the students in building national capabilities in technology, education and

research.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech CSE, the graduates will have the

following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:-

Able to Understand the working principles of the computer System and

its components , Apply the knowledge to build, asses, and analyze the

software and hardware aspects of it .

2. The comprehensive and Applicative knowledge of Software

Development: Comprehensive skills of Programming Languages,

Software process models, methodologies, and able to plan, develop, test,

analyze, and manage the software and hardware intensive systems in

heterogeneous platforms individually or working in teams.

Applications of Computing Domain & Research: Able to use the

professional, managerial, interdisciplinary skill set, and domain specific tools in

development processes, identify the research gaps, and provide innovative

solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the

cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge

and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,

and modern engineering and IT tools including prediction and modeling to

complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as

a member and leader in a team, to manage projects and in multi-disciplinary

environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability

to engage in independent and life-long learning in the broadest context of

technological change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at-least 5 minutes before (to the starting

time), those who come after 5minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab

with the synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a) Laboratory observation notes with all the details (Problem statement, Aim, Algorithm,

Procedure, Program, Expected Output, etc.,) filled in for the lab session.

b) Laboratory Record updated upto the last session experiments and other utensils (if

any) needed in the lab.

c) Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system

allotted to you by the faculty.

5. Execute your task in the laboratory, and record the results/output in the lab observation

notebook, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

7. Computerlabsareestablishedwithsophisticatedandhighendbrandedsystems, which should be

utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab

sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract severe

punishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if anybody

found loitering outside the lab / class without permission during working hours will be treated

seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab

after completing the task (experiment) in all aspects. He/she must ensure the system / seat is kept properly.

HEAD OF THE DEPARTMENT PRINCIPAL

BCT Lab 2024-25

MALLAREDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

 IV Year B.Tech. CSE I Sem L/T/P/C
 -/-/3/1.5

(R20A0591)BLOCKCHAIN TECHNOLOGY LAB

COURSE OBJECTIVES

This course will enable the students:

1. Understanding Block chain Fundamentals and creating basic blocks.

2. Able to Develop Block chain Applications in a structured manner

3. Ability to createown crypto currency and get familiarity with future currencies.

4. Able to Evaluate and AnalyzeBlock chain Systems

LIST OF EXPERIMENTS

Week 1: Creating Merkle tree

Week 2: Creation of Block

Week 3: Block chain Implementation Programming code

Week 4: Creating ERC20 token

Week 5: Java code to implement blockchain in Merkle Trees

Week 6: Java Code to implement Mining using block chain

Week 7: Java Code to implement peer-to-peer using block chain

Week 8: Creating a Crypto-currency Wallet

COURSE OUTCOMES

1. Knowledge of Blockchain Concepts and creating basic blocks.

2. Proficiency in Blockchain Development.

3. Ability to Design and Implement Blockchain Applications.

4. Evaluation and Analysis of Blockchain Systems.

5. Knowledge of crypto currency and creating a basic form of it.

BCT Lab 2024-25

TABLE OF CONTENTS

S. No
Name of the Program

Page no

1
Creating Merkle tree

1

2
Creation of Block

4

3
Blockchain implementation

7

4
Creating ERC20 token

10

5
Blockchain implementation using Merkle Trees

12

6
Mining in Blockchain

15

7
Peer-to-Peer implementation using Blockchain

20

8
Creating Crypto-currency Wallet

26

BCT Lab 2024-25

Department of CSE Page 1

WEEK: 1

AIM: Creating Merkle tree

Merkle Tree

Merkle tree is a tree data structure with leaf nodes and non leaf nodes. It also known as Hash tree.

The reason behind it is it only stores the hashes in its nodes instead of data. In its leaf nodes, it will

store the hash of the data. Non leaf nodes contain the hash of its children.

Bit coin’s merkle-tree implementation works the following way:

1. split the transactions in the block up into pairs

2. byte-swap the txids

3. concatenate the txids

4. double hash the concatenated pairs

SOURCE CODE:

import java.nio.charset.StandardCharsets;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.List;

public class MerkleTree {

private List<String> transactions;

private List<String> merkleTree;

public MerkleTree(List<String> transactions) {

this.transactions = transactions;

this.merkleTree = buildMerkleTree(transactions);

}

private String calculateHash(String data) {

try {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hashBytes = digest.digest(data.getBytes(StandardCharsets.UTF_8));

StringBuilder hexString = new StringBuilder();

for (byte hashByte : hashBytes) {

String hex = Integer.toHexString(0xff &hashByte);

if (hex.length() == 1) {

BCT Lab 2024-25

Department of CSE Page 2

hexString.append('0');

}

hexString.append(hex);

}

return hexString.toString();

}

catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

return null;

}

private List<String> buildMerkleTree(List<String> transactions) {

List<String> merkleTree = new ArrayList<>(transactions);

int levelOffset = 0;

for (int levelSize = transactions.size(); levelSize> 1; levelSize = (levelSize + 1) / 2) {

for (int left = 0; left <levelSize; left += 2) {

int right = Math.min(left + 1, levelSize - 1);

String leftHash = merkleTree.get(levelOffset + left);

String rightHash = merkleTree.get(levelOffset + right);

String parentHash = calculateHash(leftHash + rightHash);

merkleTree.add(parentHash);

}

levelOffset += levelSize;

}

return merkleTree;

}

public List<String>getMerkleTree() {

return merkleTree;

}

public static void main(String[] args) {

List<String> transactions = new ArrayList<>();

transactions.add("Transaction 1");

transactions.add("Transaction 2");

transactions.add("Transaction 3");

transactions.add("Transaction 4");

BCT Lab 2024-25

Department of CSE Page 3

MerkleTree merkleTree = new MerkleTree(transactions);

List<String> tree = merkleTree.getMerkleTree();

for (String hash : tree) {

System.out.println(hash);

}}}

EXPECTED OUTPUT:

OUTPUT:

BCT Lab 2024-25

Department of CSE Page 4

WEEK : 2

AIM : Creation of Block

Blocks are data structures within the blockchain database, where transaction data in a

cryptocurrency blockchain are permanently recorded. A block records some or all of the most recent

transactions not yet validated by the network. Once the data are validated, the block is closed. Then,

a new block is created for new transactions to be entered into and validated.

Blocks are created when miners or block validators successfully validate the encrypted

information in the blockheader, which prompts the creation of a new block.

SOURCE CODE:

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.Date;

public class Block {

private int index;

private long timestamp;

private String previousHash;

private String hash;

private String data;

private int nonce;

public Block(int index, String previousHash, String data) {

this.index = index;

this.timestamp = new Date().getTime();

this.previousHash = previousHash;

this.data = data;

this.nonce = 0;

this.hash = calculateHash();

}

public String calculateHash() {

try {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

String input = index + timestamp + previousHash + data + nonce;

byte[] hashBytes = digest.digest(input.getBytes());

StringBuilder hexString = new StringBuilder();

BCT Lab 2024-25

Department of CSE Page 5

for (byte hashByte : hashBytes) {

String hex = Integer.toHexString(0xff &hashByte);

if (hex.length() == 1) {

hexString.append('0');

}

hexString.append(hex);

}

return hexString.toString();

}

catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

return null;

}

public void mineBlock(int difficulty) {

String target = new String(new char[difficulty]).replace('\0', '0');

while (!hash.substring(0, difficulty).equals(target)) {

nonce++;

hash = calculateHash();

}

System.out.println("Block mined: " + hash);

}

public int getIndex() {

return index;

}

public long getTimestamp() {

return timestamp;

}

public String getPreviousHash() {

return previousHash;

}

public String getHash() {

return hash;

}

public String getData() {

BCT Lab 2024-25

Department of CSE Page 6

return data;

}

public static void main(String args[]){

Block b=new

Block(1,"3a42c503953909637f78dd8c99b3b85ddde362415585afc11901bdefe8349102","hai");

b.calculateHash();

b.mineBlock(1);

b.getIndex();

b.getTimestamp();

b.getPreviousHash();

b.getHash();

b.getData();

}}

EXPECTED OUTPUT:

OUTPUT:

BCT Lab 2024-25

Department of CSE Page 7

WEEK:3

AIM : Block chain Implementation Programming code

Block chain programming fundamentals:

In order to understand Blockchain deeply, the concept of a Digital Signature or a Hash is important.

Digital Signature is basically a function that takes a string as input and returns a fixed-size

alphanumeric string. The output string is known as the Digital Signature or the Hash of the input

message. The important point is that the function via which we obtain the Digital Signature is

“irreversible” in that given an input string, it can compute the Hash. However, given the Hash, it is

virtually impossible to compute the input string. Further, it is also virtually impossible to find 2

values that have the same Hash.

Hash1=hash(input1)

Hash2=hash(input2)

It is easy to compute hash1 from input1 and hash2 from input2.

It is virtually impossible to compute input1 given the value of hash1. Similarly for input2 and hash2.

It is virtually impossible to find distinct input1 and input2 such that hash1 = hash2.

SOURCE CODE:

import java.util.ArrayList;

import java.util.List;

public class Blockchain {

private List<Block> chain;

private int difficulty;

public Blockchain(int difficulty) {

this.chain = new ArrayList<>();

this.difficulty = difficulty;

// Create the genesis block

createGenesisBlock();

}

private void createGenesisBlock() {

Block genesisBlock = new Block(0, "0", "Genesis Block");

genesisBlock.mineBlock(difficulty);

chain.add(genesisBlock);

}

https://bisontrails.co/digital-signatures/

BCT Lab 2024-25

Department of CSE Page 8

public Block getLatestBlock() {

return chain.get(chain.size() - 1);

}

public void addBlock(Block newBlock) {

newBlock.mineBlock(difficulty);

chain.add(newBlock);

}

public boolean isChainValid() {

for (int i = 1; i <chain.size(); i++) {

Block currentBlock = chain.get(i);

Block previousBlock = chain.get(i - 1);

if (!currentBlock.getHash().equals(currentBlock.calculateHash())) {

System.out.println("Invalid hash for Block " + currentBlock.getIndex());

return false;

}

if (!previousBlock.getHash().equals(currentBlock.getPreviousHash())) {

System.out.println("Invalid previous hash for Block " + currentBlock.getIndex());

return false;

}}

return true;

}

public static void main(String[] args) {

Blockchain blockchain = new Blockchain(4);

Block block1 = new Block(1, blockchain.getLatestBlock().getHash(), "Data 1");

blockchain.addBlock(block1);

Block block2 = new Block(2, blockchain.getLatestBlock().getHash(), "Data 2");

blockchain.addBlock(block2);

Block block3 = new Block(3, blockchain.getLatestBlock().getHash(), "Data 3");

blockchain.addBlock(block3);

System.out.println("Blockchain is valid: " + blockchain.isChainValid());

}

}

BCT Lab 2024-25

Department of CSE Page 9

EXPECTED OUTPUT:

OUTPUT:

BCT Lab 2024-25

Department of CSE Page 10

WEEK:4

AIM : CreatingERC20 token

An ERC20 token is a standard used for creating and issuing smart contracts on the Ethereum

blockchain. Smart contracts can then be used to create smart property or tokenized assets that people

can invest in. ERC stands for "Ethereum request for comment," and the ERC20 standard was

implemented in 2015

SOURCE CODE:

import java.util.HashMap;

import java.util.Map;

public class ERC20Token {

private String name;

private String symbol;

private int decimals;

private Map<String, Integer> balances;

public ERC20Token(String name, String symbol, int decimals) {

this.name = name;

this.symbol = symbol;

this.decimals = decimals;

this.balances = new HashMap<>();

}

public void transfer(String from, String to, int amount) {

int balance = balances.getOrDefault(from, 0);

if (balance < amount) {

System.out.println("Insufficient balance");

return;

}

balances.put(from, balance - amount);

balances.put(to, balances.getOrDefault(to, 0) + amount);

System.out.println("Transfer successful");

}

public int balanceOf(String address) {

return balances.getOrDefault(address, 0);

}

BCT Lab 2024-25

Department of CSE Page 11

public String getName() {

return name; }

public String getSymbol() {

return symbol; }

public int getDecimals() {

return decimals; }

public static void main(String[] args) {

ERC20Token token = new ERC20Token("MyToken", "MTK", 18);

// Set initial balances

token.balances.put("Alice", 1000);

token.balances.put("Bob", 500);

token.balances.put("Charlie", 200);

// Perform some transfers

token.transfer("Alice", "Bob", 200);

token.transfer("Charlie", "Alice", 100);

token.transfer("Bob", "Charlie", 50);

// Print final balances

System.out.println("Alice balance: " + token.balanceOf("Alice"));

System.out.println("Bob balance: " + token.balanceOf("Bob"));

System.out.println("Charlie balance: " + token.balanceOf("Charlie"));

}}

EXPECTED OUTPUT:

OUTPUT:

BCT Lab 2024-25

Department of CSE Page 12

WEEK:5

AIM: Java code to implement blockchain in Merkle Trees

Merkle trees is an implementation of binary trees where each non-leaf node is a hash of the two

child nodes. The leaves can either be the data itself or a hash/signature of the data.

Usages:

Merkle tree(Hash tree) is used to verify any kind of data stored, handled and transferred in and

between computers.

Currently, the main use of Merkle tree is to make sure that data blocks received from other peers in a

peer-to-peer network are received undamaged and unaltered, and even to check that the other peers

do not lie and send fake blocks.

Merkle tree is used in git, Amazon's Dynamo, Cassandra as well as BitCoin.

SOURCE CODE:

import java.util.ArrayList;

import java.util.List;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

class MerkleTree {

private List<String> transactions;

private String root;

public MerkleTree(List<String> transactions) {

this.transactions = transactions;

this.root = buildTree();

}

private String buildTree() {

List<String> level = new ArrayList<>(transactions);

while (level.size() > 1) {

List<String>nextLevel = new ArrayList<>();

for (int i = 0; i <level.size(); i += 2) {

String left = level.get(i);

String right = (i + 1 <level.size()) ? level.get(i + 1) : "";

String combined = left + right;

String hash = calculateHash(combined);

nextLevel.add(hash);

}

BCT Lab 2024-25

Department of CSE Page 13

level = nextLevel;

}

return level.get(0);

}

private String calculateHash(String input) {

try {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hashBytes = digest.digest(input.getBytes());

StringBuilder hexString = new StringBuilder();

for (byte hashByte : hashBytes) {

String hex = Integer.toHexString(0xff &hashByte);

if (hex.length() == 1)

hexString.append('0');

hexString.append(hex);

}

return hexString.toString();

}

catch (NoSuchAlgorithmException e) {

e.printStackTrace();

return null;

}}

public String getRoot() {

return root;

}}

public class Blockchain1 {

private List<MerkleTree> blocks;

public Blockchain1() {

this.blocks = new ArrayList<>();

}

public void addBlock(List<String> transactions) {

MerkleTree merkleTree = new MerkleTree(transactions);

blocks.add(merkleTree);

}

public String getBlockRoot(int blockIndex) {

if (blockIndex>= 0 &&blockIndex<blocks.size()) {

BCT Lab 2024-25

Department of CSE Page 14

MerkleTree merkleTree = blocks.get(blockIndex);

return merkleTree.getRoot();

}

return null;

}

public static void main(String[] args) {

Blockchain1 blockchain = new Blockchain1();

List<String> transactions1 = new ArrayList<>();

transactions1.add("Transaction 1");

transactions1.add("Transaction 2");

transactions1.add("Transaction 3");

blockchain.addBlock(transactions1);

List<String> transactions2 = new ArrayList<>();

transactions2.add("Transaction 4");

transactions2.add("Transaction 5");

blockchain.addBlock(transactions2);

String root1 = blockchain.getBlockRoot(0);

System.out.println("Block 1 Root: " + root1);

String root2 = blockchain.getBlockRoot(1);

System.out.println("Block 2 Root: " + root2);

}

}

EXPECTED OUTPUT:

OUTPUT:

BCT Lab 2024-25

Department of CSE Page 15

WEEK:6

AIM: Java Code to implement Mining using block chain

Blockchain is a budding technology that has tremendous scope in the coming years. Blockchain is

the modern technology that stores data in the form of block data connected through cryptography

and cryptocurrencies such as Bitcoin. It was introduced by Stuart Haber and W. Scott Tornetta in

1991. It is a linked list where the nodes are the blocks in the Blockchain, and the references are

hashes of the previous block in the chain. References are cryptographic hashes when dealing with

link lists. The references are just basically objects. So every single node will store another node

variable, and it will be the reference to the next node. In this case, the references are cryptographic

hashes.

Blockchain uses hash pointers to reference the previous node in a long list. We assign a hash to every

single node because this is how we can identify them

SOURCE CODE:

import java.nio.charset.StandardCharsets;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.List;

class Block {

private int index;

private long timestamp;

private String previousHash;

private String hash;

private int nonce;

private List<Transaction> transactions;

public Block(int index, long timestamp, String previousHash, List<Transaction> transactions) {

this.index = index;

this.timestamp = timestamp;

this.previousHash = previousHash;

this.transactions = transactions;

this.nonce = 0;

this.hash = calculateHash();

}

public String calculateHash() {

https://www.javatpoint.com/blockchain-tutorial
https://www.javatpoint.com/what-is-cryptocurrency
https://www.javatpoint.com/bitcoin

BCT Lab 2024-25

Department of CSE Page 16

try {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

String data = index + timestamp + previousHash + nonce + transactions.toString();

byte[] hashBytes = digest.digest(data.getBytes(StandardCharsets.UTF_8));

StringBuilder hexString = new StringBuilder();

for (byte hashByte : hashBytes) {

String hex = Integer.toHexString(0xff &hashByte);

if (hex.length() == 1)

hexString.append('0');

hexString.append(hex);

}

return hexString.toString();

}

catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

return null;

}

public void mineBlock(int difficulty) {

String target = new String(new char[difficulty]).replace('\0', '0');

while (!hash.substring(0, difficulty).equals(target)) {

nonce++;

hash = calculateHash();

}

System.out.println("Block mined: " + hash);

}

public String getHash() {

return hash;

}

public String getPreviousHash() {

return previousHash;

}}

class Transaction {

private String from;

private String to;

BCT Lab 2024-25

Department of CSE Page 17

private double amount;

public Transaction(String from, String to, double amount) {

this.from = from;

this.to = to;

this.amount = amount;

}

@Override

public String toString() {

return from + "->" + to + ": " + amount;

}}

class Blockchain {

private List<Block> chain;

private int difficulty;

public Blockchain(int difficulty) {

this.chain = new ArrayList<>();

this.difficulty = difficulty;

createGenesisBlock();

}

private void createGenesisBlock() {

List<Transaction> transactions = new ArrayList<>();

transactions.add(new Transaction("Genesis", "Alice", 100));

Block genesisBlock = new Block(0, System.currentTimeMillis(), "0", transactions);

genesisBlock.mineBlock(difficulty);

chain.add(genesisBlock);

}

public void addBlock(Block block) {

block.mineBlock(difficulty);

chain.add(block);

}

public boolean isChainValid() {

for (int i = 1; i <chain.size(); i++) {

Block currentBlock = chain.get(i);

Block previousBlock = chain.get(i - 1);

if (!currentBlock.getHash().equals(currentBlock.calculateHash()))

return false;

BCT Lab 2024-25

Department of CSE Page 18

if (!currentBlock.getPreviousHash().equals(previousBlock.getHash()))

return false;

}

return true;

}

public Block getLastBlock() {

return chain.get(chain.size() - 1);

}}

public class BlockchainMiningExample {

public static void main(String[] args) {

// Create a blockchain with difficulty 4

Blockchain blockchain = new Blockchain(4);

// Create some transactions and add them to a block

List<Transaction> transactions = new ArrayList<>();

transactions.add(new Transaction("Alice", "Bob", 10.0));

transactions.add(new Transaction("Charlie", "Alice", 5.0));

Block block1 = new Block(1, System.currentTimeMillis(), blockchain.getLastBlock().getHash(),

transactions);

// Add the block to the blockchain

blockchain.addBlock(block1);

// Create another block with different transactions

List<Transaction> transactions2 = new ArrayList<>();

transactions2.add(new Transaction("Bob", "Charlie", 3.0));

transactions2.add(new Transaction("Alice", "Bob", 2.0));

Block block2 = new Block(2, System.currentTimeMillis(), blockchain.getLastBlock().getHash(),

transactions2);

// Add the second block to the blockchain

blockchain.addBlock(block2);

// Validate the blockchain

System.out.println("Is blockchain valid? " + blockchain.isChainValid());

}}

BCT Lab 2024-25

Department of CSE Page 19

EXPECTED OUTPUT:

OUTPUT:

BCT Lab 2024-25

Department of CSE Page 20

WEEK:7

AIM: Java Code to implement peer-to-peer using block chain

Earlier, we made a single blockchain. Now we’re going to make a set of them and get them talking to

one another. The real point of the blockchain is a distributed system of verification. We can add

blocks from any nodes and eventually it gets to peer nodes so everyone agrees on what the

blockchain looks like. There is one problem that comes up right away: Each node is two services,

plus a MongoDB and a Kafka message bus that all need to talk to one another. We’ll be working on

a node service that will allow the nodes to work with one another. This will get input from two

places, a restful interface that allows you to add and list the nodes connected, and a message bus

provided by Kafka that notifies the node service of changes in the local blockchain that need to be

broadcast to the peer nodes.

SOURCE CODE:

import java.nio.charset.StandardCharsets;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.List;

class Block {

private int index;

private long timestamp;

private String previousHash;

private String hash;

private int nonce;

private List<Transaction> transactions;

public Block(int index, long timestamp, String previousHash, List<Transaction> transactions) {

this.index = index;

this.timestamp = timestamp;

this.previousHash = previousHash;

this.transactions = transactions;

this.nonce = 0;

this.hash = calculateHash();

}

public String calculateHash() {

try {

BCT Lab 2024-25

Department of CSE Page 21

MessageDigest digest = MessageDigest.getInstance("SHA-256");

String data = index + timestamp + previousHash + nonce + transactions.toString();

byte[] hashBytes = digest.digest(data.getBytes(StandardCharsets.UTF_8));

StringBuilder hexString = new StringBuilder();

for (byte hashByte : hashBytes) {

String hex = Integer.toHexString(0xff &hashByte);

if (hex.length() == 1)

hexString.append('0');

hexString.append(hex);

}

return hexString.toString();

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

return null;

}

public void mineBlock(int difficulty) {

String target = new String(new char[difficulty]).replace('\0', '0');

while (!hash.substring(0, difficulty).equals(target)) {

nonce++;

hash = calculateHash();

}

System.out.println("Block mined: " + hash);

}

public int getIndex() {

return index;

}

public long getTimestamp() {

return timestamp;

}

public String getPreviousHash() {

return previousHash;

}

public String getHash() {

return hash;

BCT Lab 2024-25

Department of CSE Page 22

}

public int getNonce() {

return nonce;

}

public List<Transaction>getTransactions() {

return transactions;

}}

class Transaction {

private String from;

private String to;

private double amount;

public Transaction(String from, String to, double amount) {

this.from = from;

this.to = to;

this.amount = amount;

}

public String getFrom() {

return from;

}

public String getTo() {

return to;

}

public double getAmount() {

return amount;

}

@Override

public String toString() {

return from + "->" + to + ": " + amount;

}}

class Blockchain {

private List<Block> chain;

private int difficulty;

public Blockchain(int difficulty) {

this.chain = new ArrayList<>();

this.difficulty = difficulty;

BCT Lab 2024-25

Department of CSE Page 23

createGenesisBlock();

}

private void createGenesisBlock() {

List<Transaction> transactions = new ArrayList<>();

transactions.add(new Transaction("Genesis", "Alice", 100));

Block genesisBlock = new Block(0, System.currentTimeMillis(), "0", transactions);

genesisBlock.mineBlock(difficulty);

chain.add(genesisBlock);

}

public void addBlock(Block block) {

block.mineBlock(difficulty);

chain.add(block);

}

public boolean isChainValid() {

for (int i = 1; i <chain.size(); i++) {

Block currentBlock = chain.get(i);

Block previousBlock = chain.get(i - 1);

if (!currentBlock.getHash().equals(currentBlock.calculateHash()))

return false;

if (!currentBlock.getPreviousHash().equals(previousBlock.getHash()))

return false;

}

return true;

}

public List<Block>getChain() {

return chain;

}

public Block getLastBlock() {

return chain.get(chain.size() - 1);

}}

class Node {

private Blockchain blockchain;

private List<Transaction>pendingTransactions;

public Node(Blockchain blockchain) {

this.blockchain = blockchain;

BCT Lab 2024-25

Department of CSE Page 24

this.pendingTransactions = new ArrayList<>();

}

public void minePendingTransactions() {

Block newBlock = new Block(

blockchain.getLastBlock().getIndex() + 1,

System.currentTimeMillis(),

blockchain.getLastBlock().getHash(),pendingTransactions);

blockchain.addBlock(newBlock);

pendingTransactions.clear();

}

public void createTransaction(Transaction transaction) {

pendingTransactions.add(transaction);

}

public Blockchain getBlockchain() {

return blockchain;

}

public List<Transaction>getPendingTransactions() {

return pendingTransactions;

}}

public class PeerToPeerBlockchain {

public static void main(String[] args) {

// Create a blockchain with difficulty 4

Blockchain blockchain = new Blockchain(4);

// Create two nodes

Node node1 = new Node(blockchain);

Node node2 = new Node(blockchain);

// Node 1 creates a transaction

Transaction transaction1 = new Transaction("Alice", "Bob", 10.0);

node1.createTransaction(transaction1);

// Node 2 creates a transaction

Transaction transaction2 = new Transaction("Bob", "Charlie", 5.0);

node2.createTransaction(transaction2);

// Node 1 mines the pending transactions

node1.minePendingTransactions();

// Node 2 mines the pending transactions

BCT Lab 2024-25

Department of CSE Page 25

node2.minePendingTransactions();

// Validate the blockchain

System.out.println("Is blockchain valid? " + blockchain.isChainValid());

}}

EXPECTED OUTPUT:

OUTPUT:

BCT Lab 2024-25

Department of CSE Page 26

WEEK:8

AIM: creating a Crypto-currency Wallet.

There are four basic steps.

1. Choose the type of wallet.

2. Sign up for an account, buy the device or download the software needed.

3. Set up security features, including a recovery phrase.

4. Purchase cryptocurrency or transfer coins from another wallet or exchange.

Types of crypto wallets:

There are three basic types of wallets for virtual currency.

One option is a software wallet or hot wallet that stores your crypto on an internet-connected device

that you own.

Another option to consider with added security is a cold wallet, a specialized piece of hardware that

keeps your crypto offline.

Custodial wallets, which leave your crypto in the control of a company you trust, such as a crypto

exchange, are another storage method to consider.

SOURCE CODE:

import java.security.*;

import java.security.spec.ECGenParameterSpec;

public class CryptoWallet {

private PrivateKey privateKey;

private PublicKey publicKey;

public CryptoWallet() {

generateKeyPair();

}

public void generateKeyPair() {

try {

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC");

SecureRandom random = SecureRandom.getInstanceStrong();

ECGenParameterSpec ecSpec = new ECGenParameterSpec("spec256k1");

keyGen.initialize(ecSpec, random);

KeyPair keyPair = keyGen.generateKeyPair();

privateKey = keyPair.getPrivate();

publicKey = keyPair.getPublic();

} catch (Exception e) {

BCT Lab 2024-25

Department of CSE Page 27

e.printStackTrace();

}}

public static void main(String[] args) {

CryptoWallet wallet = new CryptoWallet();

System.out.println("Private Key: " + wallet.privateKey);

System.out.println("Public Key: " + wallet.publicKey);

}}

EXPECTED OUTPUT:

OUTPUT:

